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Disclaimer 

The contents of this report reflect the views of the authors, who are responsible for the facts and 

accuracy of the data presented herein.  This document is disseminated through the Transportation 

Northwest (TransNow) Regional Center under the sponsorship of the U.S. Department of 

Transportation UTC Grant Program and through the Washington State Department of 

Transportation.  The U.S. government assumes no liability for the contents or use thereof.  

Sponsorship for the local match portion of this research project was provided by the Washington 

State Department of Transportation.  The contents do not necessarily reflect the official views or 

policies of the U.S. Department of Transportation, the Washington State Department of 

Transportation, or the Federal Highway Administration.  This report does not constitute a 

standard, specification, or regulation. 
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Abstract 

Image processing has been applied to traffic analysis in recent years, with different goals.  

In this report, a new approach is presented for extracting vehicular speed information, given a 

sequence of real-time traffic images.  We extract moving edges and process the resulting edge 

information to obtain quantitative geometric measurements of vehicles.  This differs from 

existing approaches because we use simple geometric relations obtained directly from the image 

instead of using reference objects to perform camera calibrations.  Our method allows the 

recovery of the physical descriptions of traffic scenes without explicit camera calibration.  In this 

report, extensive experiments using images from active TMS (Transportation Management 

System) freeway cameras are reported.  The results presented in this report demonstrate the 

validity of our approach which requires neither direct camera control nor placement of a 

calibration object in the environment.  We further argue that it is straightforward to extend our 

method to other related traffic applications 
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1  Introduction  

In recent years, image processing has been applied to the field of traffic research with 

goals that include queue detection, incident detection, vehicle classification, and vehicle counting 

[1, 2, 3, 4, 5, 6, 7].  

This report explicitly recognizes that speed is an important parameter in traffic analysis.  

Relatively few efforts have attempted to measure speed by using video images from uncalibrated 

cameras.  Some preliminary research on pixel speed estimation in images appears in Soh et al [6] 

and Picton [8].  A review of the literature on physical speed estimation shows that almost all of 

the algorithms involve some man-made reference information.  For example, Worrall et al [9] 

describes an interactive tool for performing camera calibration.  In this interactive application, an 

operator first identifies vanishing points from parallel road marks and then places a rectangular 

grid on the image for calibration.  Dickinson and Waterfall [10] and Ashworth et al [11] make 

speed measurements from the known physical distance between two detection windows placed 

on the road image.  Similarly, several other papers [12, 13] suggest estimating speed by first 

placing two detection lines (separated by a known distance) and then measuring travel times 

between the lines.  Houkes [14 ] determined four reference points to form a rectangle before 

taking the off-line measurements.  In that case, the camera had to remain in the same position 

during all measurements for the process to be valid. 

In this research, we assumed that we had no control over camera movements and thus 

could not directly obtain information such as camera focus, tilt, or angle.  We further assumed 

that the camera parameters could change any time without our knowledge.  In our project, we 

were monitoring congested freeways and had neither the ability nor the authority to set 

permanent marks on the road.   
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We believe on-line calibration is a necessary step in using the large, installed base of 

TMS cameras.  We propose that exact calibration is not necessary to estimate speed using our 

algorithm; instead, we use information inherently available in the image.  We focus on a 1-D 

geometry for the traffic on the road.  Using a car length distribution from our previous research 

[15], we propose a novel method that extracts scaling signatures and computes the speed 

distribution on the basis of the geometric relationships in the image. 

1.1  ASSUMPTIONS 

To clarify the problem presented here, we made several assumptions in our work: 

a) Finite speed [16]:  The speed of a vehicle has both physical and legal limits. 

b) Movement is smooth [16]:  No sudden changes of directions are expected between 

frame intervals (330ms). 

c) Motion is constrained to the road plane [17], and thus we are posing camera 

calibration as a 1-D geometry problem. 

In this work, we used 320x240 gray-scale images at a frame rate of 3 frames per second 

(fps).  These are demonstrated to be adequate for reliable analysis, as well as being small enough 

to allow efficient processing. 

1.2  REPORT OVERVIEW 

Our algorithm for speed extraction first applies a series of operators to single images to 

create a set of enhanced images.  We then use this set of enhanced images to create a speed 

estimation algorithm.  In this report, we first describe the single image operations and then 

present the overall algorithm as applied to a group of images.  Chapter 2 introduces major 

procedures for each single image.  These consist of a preprocessing step, a moving-edge 

detection step, a morphological operation step, and a convex hull and bounding box extraction 
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step.  In Chapter 3, we discuss geometric relation analysis, as well as distance and speed 

estimation algorithms for an image sequence.  Chapter 4 presents the field trials, experimental 

results, and discussion.  In Chapter 5, we present conclusions about the effectiveness of the 

algorithm.  
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2  Single Frame Processing 

The single image processing steps are shown in Figure 2.1.  These steps include 

preprocessing, moving edge detection, morphological operations, and convex hull and bounding 

box extraction.  The next section describes details of the pre-processing under the assumptions 

presented earlier. 

Figure 2.1  Image processing flow for a single image 

2.1  PREPROCESSING 

The traffic images have a noise component from several interference sources.  The types 

of noise include the following [18]:  

1) Salt-and-pepper noise, which occurs when an image is coded and transmitted over a 

noisy channel or degraded by electrical sensor noise, as in video cameras. 

2) Convolutional noise (blurring), which produces images that are degraded by lens mis-

focus, motion, or atmospheric turbulence, such as adverse weather conditions. 
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Both noise sources contribute to high-frequency noise components.  In our process, 

median filtering is used to reduce this high-frequency noise.  It preserves the edge information 

required by our algorithm.  Edges are a key image feature, as they remain prominent despite the 

variations in the traffic scene’s ambient lighting.  Our median filter uses a 3x3 kernel to remove 

high frequency noise from the image.  

The 3x3 kernel moves row by row, pixel by pixel.  A pixel is regarded as the center of the 

3x3 window.  The median value of the set of nine pixels in the 3x3 neighborhood is used as the 

new filtered value of the pixel at the center.  This way, impulse noise with extreme values can be 

suppressed.  Since the total area in our process is fixed in advance, locating the median value is 

fast.  It is the fifth value in the sorted array [19].  

The next section describes the moving edge detection module of our algorithm.  The 

algorithm uses the images preprocessed by the median filtering just presented. 

2.2  MOVING-EDGE DETECTION  

Moving edge detection is applied to extract the moving parts from a complex background 

in an image sequence.  The static background is then deleted to locate the moving objects. 

2.2.1  Sobel Edge Detector 

Let I(i,j) denote the pixel value being processed.  Its neighbors are considered to 

determine whether it is on an edge or not.  Usually a 3x3 or 5x5 neighbor window is used for one 

pixel.  In our work, a 3x3 window is used for processing, as shown in the matrix below.  For the 

pixel I(i,j), the eight neighbors are I1 through I8. 

I3 I2 I1 

I4 I(i,j) I8 

I5 I6 I7 
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The Sobel edge magnitude is computed is [20] as 

I i j u vs ( ,  ) = ( 2 2 1 2+ ) ,/  (1) 

where 

u I I I I I I= ( 5 6 7 1 2 32 2+ + - + +) ( ),  (2) 

and 

v I I I I I I= (2 8 1 7 3 4 52+ + - + +) ( ).  (3) 

The gradient is computed as  

G i j tan u vs ( , ) ( / ).= -1  (4) 

 

The above computational process moves a 3x3 window with the current pixel as the 

window center.  After the magnitude is obtained, a threshold can be used to determine which 

pixel is on an edge.  If the Sobel magnitude is below the threshold, the pixel will be discarded.  

This means that the magnitude response is not strong enough to claim an edge point.  The 

selection of an appropriate threshold  is dependent on the content of the images. 

An example is shown in Figure 2.2.  We assert that most of the edges are detected by 

Sobel edge detection.  

2.2.2  Moving Edge Detection 

In previous work by Gil [21], moving objects were segmented from the traffic 

background with a motion detection algorithm based on a multi-resolution relaxation.  This 

resulted in a set of coarse binary masks for each vehicle.  A refinement process was then applied 

to obtain a more accurate description.  In multi-resolution relaxation, both the starting and ending 

resolution need to be selected on the basis of engineering judgment.  Fathy and Siyal [2] present 

a window-based edge detection method that combines morphological edge detectors and a 
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median filtering.  However, their process [2] requires the user to pre-place all the detection 

windows at the key regions across the lanes, and therefore the user needs to have detailed 

knowledge of the road.  Kudo [22] applies a one-dimensional gradient operation to a sub-region 

with a window along the road, which falls into the same category. 

Original image 

Sobel edge image 

Figure 2.2  Sobel edge detection 

In this process, we use image differencing to extract motion information.  There are two 

basic differencing methods in the literature:  1) background differencing and 2) interframe 

differencing.  In background differencing, a reference frame that contains no moving vehicles is 

subtracted from each frame.  In real world applications, where the ambient lighting varies 

rapidly, the reference frame needs to be updated regularly to reflect the current background and 
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to provide reliable segmentation.  This reference frame can be obtained by either grabbing a 

frame when no vehicles are presented or by multi-frame accumulation [23].  Several methods are 

suggested by Fathy and Siyal [2] and Koller et all [17] to update the background image.  

However, these methods are slow and computationally expensive and thus cannot meet real-time 

processing requirements.  Furthermore, on congested freeways (the domain of interest) it is 

difficult to obtain images with no vehicles that match the present light level.  Therefore, to 

mitigate these problems, we adopt the inter-frame differencing method to eliminate the complex 

background and detect the moving vehicles. 

Cai [23] used forward and backward image differencing and then extracted common 

regions corresponding to the moving areas.  Instead of extracting regions, Vieren [24] proposed a 

method to combine inter-frame differencing and a differential operator to extract moving edges.  

In our process, we combine inter-frame differencing with the Sobel edge detector to extract the 

moving edges.  To emphasize the movement signature, we use three sequential images and 

process each image relative to its previous and subsequent images.  In this way, we separate the 

movement from the static background.   

Our algorithm is applied to three images:  the previous temporal image (Ip), the current 

image of interest (Ic), and the next temporal image (In): 

E d g e image Sobe l Sobe lI I I Ip c n c_   = - Ç -( ) ( ) . (5) 

That is: 

1) Take the difference between the previous image Ip and the current 

image Ic. 

2) Take the difference between the next image In and the current image 

Ic.  



 9

3) Sobel edge operators are applied to these two different images to 

get two edge images.  

4) Compare the magnitudes of all edge pixels in the two edge images 

resulting from the Sobel edge operator with a magnitude threshold.  

If the magnitude of a pixel is less than the threshold, then it is 

set to be 0.  Otherwise, it is set to be 1.  This produces two 

binary edge images.  

5) Create the intersection of the two binary edge images.  Extract 

common moving edges present in the original current image, Ic.   

This process produces an edge image for the current image of interest from which we will 

extract individual vehicle information in the next chapter.  

Figure 2.3  A typical sequence 

Example images for the above process are shown in Figures 2.3, 2.4, 2.5, and 2.6.  Figure 

2.3 shows three original successive frames in an image sequence.  Figure 2.4 shows the edge 
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image of the difference image between the first two frames.  Figure 2.5 shows the edge image of 

the difference image between the second and third frames.  Figure 2.6 shows the final moving 

edge image.  Almost all of the moving edges are extracted successfully. 

Figure 2.4  Sobel edges in the difference image between the first two frames 

Figure 2.5  Sobel edges in the difference image between the second and third frames 
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Figure 2.6  Moving edges 

2.3  MORPHOLOGICAL OPERATION TO OBTAIN MOVING BLOBS  

In the moving edge image just described, there are always gaps along the edges.  To 

obtain a profile of the vehicle, we need to enhance the moving edges.  This enhancement uses the 

morphological operators dilation and erosion with an appropriate structural element.  The result 

of sequentially applying dilation and erosion [25] is to remove specific image features smaller 

than the structural element without affecting the large features of interest.   

Dilation and erosion are two basic morphological operations, which will be discussed 

first.  Dilating an object is to translate all its points with regard to a structural element followed 

by union operation.  On the other hand, eroding an object is to translate all its points first by 

using a structural element and then to conduct the intersection operation to get the final result.  

This way,  dilation expands an object and erosion shrinks it by the size of the specified structural 

element. 

Images are dilated with the max operation. They are eroded with the min operation.  A 

structural element of N by N is used to define the max or min operation regions.  To process an 

image pixel, the region containing the pixel of interest and its (N-1) by (N-1) neighboring pixels 

is processed, and the maximum or the minimum value is obtained. 
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That is, for an image matrix with m by n, and a given element size N, 

1) sort the pixel values in the N by N neighborhood 

2) put the maximum in the dilation image matrix  

3) put the minimum in the erosion image matrix. 

Since we are processing binary images, the above sorting process can be simplified to test 

whether the pixel value is 1 or 0.  In this way, the operations are very fast. 

The selection of the size of the structural element N depends on the range of the size of 

the vehicles of interest and the range of distance between the vehicles.  For example, a vehicle 

smaller than the structural element in the image will be removed by erosion.  On the other hand, 

several vehicles close to each other will be merged to a single blob after dilation.  While our goal 

is to extract as many vehicles as possible, we do not require every vehicle in the image to be 

identified for our algorithm to accurately estimate speed.  Using morphological operations, some 

vehicles will be removed by erosion because of their small size in the image (these have been 

deemed too small to be useful in speed estimation) or will be merged by dilation because of their 

proximity (these have been deemed inappropriate because of possible occlusion effects).   

Figures 2.7 and 2.8 show some morphological examples.  Figure 2.7 shows the result of 

dilation operation.  Different structural element sizes (3x3 and 4x4) are used.  Observe that 

dilation with larger sized structural elements will make some blobs merge together.  Figure 2.8 

shows erosion operations.  Erosion with larger sized structural elements causes some vehicles to 

disappear from the image. 
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Original Binary image 

After dilation by a 3x3 structural element 

After dilation by a 4x4 structural element 

Figure 2.7  Dilation examples 
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 (1) original  binary image 

(2)  After erosion by a 3x3 structural element 

(3)  After erosion by a 4x4 structural element 

Figure 2.8  Erosion examples  
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Figure 2.8  Erosion examples The result of sequentially applying dilation and erosion 

[25] is to remove specific image features smaller than the structural element without affecting the 

large features of interest.  An example is shown in Figure 2.9, where an image is first dilated and 

then eroded by the same 3x3 structural element.   

Original  binary image 

After dilation 

After erosion 

Figure 2.9  Dilation followed by erosion 

At this stage, the image of interest has been enhanced to emphasize the moving vehicles 

that appear as blobs in the resulting image.  
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2.4  VEHICLE PROFILE APPROXIMATION 

2.4.1  Convex Hull Extraction 

After the application of morphological operators above, moving edges are filled and 

appear as solid moving “blobs.”  To characterize the blobs, we use a convex hull to approximate 

the contour of the vehicles.  In many cases, a convex hull is a good approximation of the 

projection of a car [21, 17].  

In the image produced by the procedure in the previous section, the background is full of 

0s, and only points inside and along the contours of the blob are of value 1.  We select the 

contour points by searching each scanline to find the rightmost or leftmost end of a blob. 

Not all contour points selected by this method will belong to the convex hull.  Therefore, 

we need to select those points that are actually on the hull.  Koller [17] proposed a convex hull 

extraction method that is suitable for our purpose.  The procedure is to define a convex hull 

point, P2(x2,y2), by its location related to its preceding point, P1(x1,y1), and following point 

P3(x3,y3).  A threshold T is used to determine the associated orientation of these three points, 

where  

T

x y

x y

x y

=

1 1

2 2

3 3

1

1

1

 . 

 

(6) 

A positive value of T indicates that those three points are in counter-clockwise order 

along the contour.  A negative T value indicates that they are in clock-wise order.  

This algorithm is used to efficiently obtain all the points on the convex hull, as shown in 

the following description:  

1) If contour point P2 is on the left side of the contour, T is computed 

to check whether it is positive (counter-clockwise).  If so, P2 is 
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regarded as being on the convex hull.  If not, P2 does not belong to 

the hull. 

2) Similarly, if P2 is on the right side of the contour, T is computed 

to check its sign.  Now, contrary to the above left-side case, if T 

is positive, it means P2 is not on the convex hull.  If T is negative 

(clockwise), P2 belongs to the hull and should be retained. 

Figure 2.10 shows an example where a convex hull is extracted by using the above 

method. 

Moving blobs for convex hull extraction 

Convex Hull for one blob 

Figure 2.10  Convex hull extraction example 
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2.4.2  Bounding Box Extraction 

To obtain scaling information directly from the image rather than using explicit camera 

calibration, we exploit the known geometric relationships in the images.  We do this by 

constructing a bounding box to enclose the convex hull.  This bounding box is used to isolate the 

area of interest in the image and is similar to window (or key region) processing described by 

Fathy and Siyal [26] and Stewart et al [27].  However, unlike window processing, we are only 

interested in looking for some simple geometric relations inside the box.   

To obtain the bounding box from the convex hull with vertices xi and yi, the algorithm, as 

seen in Figure 2.11, is: 

1) Arrange all the xi values as an array and find the minimum and 

maximum.  

2) Do the same for all yi values. 

3) The resulting box is the rectangle with vertices (counter-clockwise 

order): 

4) (min_xi, min_yi)(max_xi, min_yi)(max_xi, max_yi) 

5) (min_xi, max_yi). 

Figure 2.11  Bounding box enclosing a convex hull 
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This procedure is applied to each image in an image sequence, and we obtain a series of 

convex hulls and bounding boxes that will be used to estimate the real travel distance and speed, 

as covered in the next chapter.    

Figure 2.12 shows an example of extracting the bounding box from a convex hull. 

Convex Hull for bounding box extraction 

Bounding box extracted 

Figure 2.12  Bounding box extraction  
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3  Geometric Analysis and Speed Estimation From an Image Sequence 

The result from Chapter 2 is a series of convex hulls and bounding boxes.  This chapter 

describes utilizing the geometric features and this series of hulls and blobs for distance and speed 

computation. 

To estimate speed, we first obtain the direction of motion of each vehicle and then 

compute the best fit line through the centroids of the convex hulls found in a series of images and 

associated with a single vehicle.  A threshold on the correlation coefficient [28] for the centroids 

is used as the colinearity criterion to identify a single vehicle track.  The best fit line for the 

direction of travel is used to obtain the pixel length of the vehicle, and we exploit a simple 

triangular relationship in the bounding box to get the pixel length of the vehicle, which is then 

used to compute the scale information in the images.  Ground truth distance is estimated by using 

scale information along the direction of motion, and these distances, with the frame rate of the 

video sequence, are used to estimate speed. 

3.1  DIRECTION OF MOTION:  αα  

We assume that the vehicles make no sudden changes in directions between successive 

video frames.  This assumption allows us to track individual vehicles through successive frames.  

We identify a single vehicle track by requiring that the centroids of the convex hull be colinear in 

successive frames, as shown in Figure 3.1.  The linear regression correlation coefficient r for 

least square straight line fitting, as presented by Bevington [28], is the criterion for determining 

the colinearity of centroids. 

From experiments, we claim that we are able to identify a single vehicle in a succession 

of images if the colinearity of the centroids produces a linear regression correlation coefficient r 

greater than 0.90, where 



 21

r

n x y x y

n x x n y y

i i i

i

n

i

i

n

i

n

i

i

n

i

i

n

i i

i

n

i

n

=

-

-
F
HG

I
KJ -

F
HG

I
KJ

- --

- - --

å åå

å å åå

1 11

2

1 1

2

2

1

2

1

, 

 

(7) 

and x i and yi are the coordinates of convex hull centroids. 

Figure 3.1  Colinearity of convex hull centroids 

3.2  GEOMETRIC RELATION INSIDE THE BOUNDING  BOX 

To get the scale information from the images, we exploit the triangular relationship 

within the bounding box, as shown in Figure 3.2.  The pixel length, L_pixel, of a vehicle is 

estimated along the best fit line (L) indicating the direction of travel.  It is estimated to be the 

length of the cord along the best fit line that intersects the bounding box.  

L pixel
b o x width

_
_

 .=
sin a

 
(8) 
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Figure 3.2  Triangular relation 

To map the pixel length to ground truth vehicle lengths, we use the empirical vehicle 

length distribution shown in Figure 3.3 [15].  This allows us to readily obtain the ratio of the 

physical length, L_physical, and the pixel length, L_pixel, which is the scale factor s, 

s
lL phys ica

L pixel
=

_

_
ft pixel    ( / ) .  

(9) 

This will play a key role in the next step. 

3.3  DISTANCE AND SPEED ESTIMATION 

Next, we estimate the travel distance between frames and the vehicle speed using the 

scale factor just obtained from the above geometric analysis. 

First, some assumptions are made: 

a) Distance traveled by a car is defined by the displacement of its centroid.  

b) Scale change is smooth (linear with pixel distance) along the camera focus.  

Therefore, all scale changes form an equal difference sequence. 
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c) Scale is homogeneous (constant) inside the car (box), so that the scale obtained from 

the ratio of the two lengths is equal to the scale factor at the centroid. 

Figure 3.3  Vehicle length histogram  

To obtain the physical distance of moving centers, we estimate the scale factors at each 

pixel along the travel path having angle α .  To this end, we first need to compute the total 

number of pixels along the travel path, which can be obtained by using  

#      
#    

  ,of pixels along mov ing angle
of vert ical pixels

a
a

=
sin

 
(10) 

where the number of vertical pixels is simply the vertical pixel length between the first and the 

last centroids. 

For an image sequence with k frames, where s1 is the scale factor at the centroid of the 

convex hull of the vehicle of interest in the first frame, sk is the scale factor at the centroid of the 

convex hull of the vehicle in the k-th frame, and the number of pixels along the driving path 

between these two centroids is n, we can compute the scale change per pixel, ∆s, as 



 24

 

Ds
s s

n
k=

-

-

( )

( )
1

1
    (ft / pixel ) .2  

(11) 

The total distance D traversed between the images is then obtained by summing up the scale 

factor series as 

D ns
n n

s

n
s sk

= +
-

1

1

1

2

2

( )
D     ( )

=
+

ft

b g  

 

(12) 

The speed is then estimated as the ratio of the interframe travel distance and the known frame 

rate. 

The material just presented is the first published algorithm for an estimate of single 

vehicle speed using a statistical vehicle length and an uncalibrated camera.  The algorithm 

creates scale information on the fly from information contained in the image and does not require 

calibration markers in the physical environment.   

The algorithm presented here is validated against ground truth measurements in the next 

chapter. 
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4  Field Trials and Discussions 

4.1  FIELD TRIALS METHODOLOGY 

To test our algorithm, we compared the distance estimates (called estimated distance) 

obtained with our dynamic calibration technique with ground truth measurements on the 

freeway.  Because the travel time interval is set by the inter-frame time, the only unknown is the 

ground truth travel distance.  Field trials used both the distance between and the size of the center 

stripes.  Both these measurements are published by WSDOT, as seen in Appendix A.  

4.2  EXPERIMENTAL RESULTS 

Through extensive trials we tested the presented algorithm under different lighting 

conditions.  Estimation error is defined as the difference of the ground truth distance and the 

estimated distance divided by the ground truth distance.  Figure 4.1 shows the estimation error 

values and estimation error histogram for 60 image sequences.  As suggested by Worrall et al 

[9], the mean car length, Lm, of 25.63 ft. is used in scale factor computations.  The average 

estimation error for these 60 sequences is 8.7 percent. 

Figure 4.1  Errors and error histogram for 60 image sequences  
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Experiments suggested that when the area of shadow created by a vehicle is larger than 

two thirds of the vehicle area in the image, the estimation errors of our algorithm are 

unacceptable.  We call this situation the severe shadow effect.  Twenty such sequences were 

tested.  The estimation error histogram is shown in Figure 4.2.  Most produced estimation errors 

over 15 percent, some even over 25 percent.  A typical image sequence with serious shadow 

effects is shown in Figure 4.3.  Figure 4.4 shows two moving edge images for two frames in this 

sequence, where many moving edges actually represent the edges of shadows rather than those 

of the original vehicles.  Initial analysis indicated that shadows will affect the reliability of the 

moving edge detection, the convex hull extraction, and, finally, the scaling computation, thereby 

distorting the distance and speed estimation.  Without a priori knowledge of shadow shapes and 

directions, the effect of shadows cannot easily be included in this algorithm.   

Figure 4.2  Errors and error histogram for 20 image sequences with severe shadow effects 

Quantitative analysis of shadow effects is one focus for future improvements to the 

algorithm. 
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Figure 4.3  A typical sequence with severe shadow effects 
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Moving edges for the first frame  

Moving edges for the fourth frame  

Figure 4.4  Moving edges 

4.3  ERROR ANALYSIS  

From Worrall et al [9], the random variable vehicle length, L_physical (L is used below 

for simplicity), can be expressed as its expected value Lm (mean) and some deviation ∆L, that is 

L L Lm= +D   . (13) 

For an image sequence with k frames, suppose L1 is the car pixel length in the first frame 

and Lk is the car pixel length in the k-th frame.  Consider a case in which the cars are moving 
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away from the camera, so that the scale factor increases with the distance from the camera.  (The 

analysis is similar for a case in which the cars are moving toward the camera.)  Combining 

equations (9) and (12) gives us the estimated distance Dm, 

D
n L

L

L

L

L
n

L L

m
m m

k

m

k

= +

= +

2

2

1 1
1

1

( )

( )
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(14) 

Considering length deviation in equation (13) gives us the deviated distance Dde as  

D L L
n

L L
d e m

k

= + +( ) ( ).D
2

1 1

1

 
 

(15) 

Let e be the absolute error of distance measurement, and thus e = Dde - Dm.  Combining equations 

(14) and (15) gives the mean of error e, 

E e
n

L L
E L

k

{ } ( ) { },= +
2

1 1

1

D  
 

(16) 

where E{*} is the expected value operator, and the variance, Var{e}, is  

Var e
n

L L
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{ } [ ( )] { }.= +
2

1 1

1

2 D  
 

(17) 

Equations (16) and (17) reveal that the length deviation (L) directly affects the 

measurement error, since the pixel number n and pixel lengths Lk and L1 are uniquely determined 

for a specific image sequence with k frames.  

4.4  POSSIBLE SYSTEM EXTENSIONS 

The speed information obtained from this work can be used directly for many 

applications, such as traffic congestion detection.  It is also worthwhile to note that with some 

modifications, our method can be readily extended to other traffic analysis, including incident 
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detection, traffic model verification, and travel time estimation.  The techniques introduced in 

this report can be used as a basis for developing general-purpose, advanced intelligent traffic 

surveillance systems.  For example, combined with character pattern recognition process, our 

method can be extended to recognize the vehicle license plate number, which has recently 

become an active research area. 
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5  Conclusion 

There are many challenging problems in studying real traffic scenes within a complex 

background.  In this report, efficient image processing techniques are applied to traffic analysis 

to estimate travel speed from image sequences of moving vehicles.  Simple geometric relations 

are obtained directly from the image itself and are used to deal with real-world problems without 

explicit camera calibration.  Furthermore, the techniques presented are validated against ground 

truth by field trials.  Error analysis is also given in detail.  The car length distribution is shown to 

be a key factor in the accuracy of speed sensing.   

Some problems remain to be solved, including the effect of shadows and occlusion of 

vehicles.   

As a result of the work presented here, a manuscript has been submitted to the IEEE 

Intelligent Transportation Systems Council for presentation at ITSC’99, a peer reviewed 

conference.  A copy of this manuscript appears in Appendix B.  
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Appendix A 

WSDOT Lane Stripe DATA 
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Copy of manuscript submitted to IEEE Intelligent Transportation Systems Council for 
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